A peptide hormone gene, GhPSK promotes fibre elongation and contributes to longer and finer cotton fibre.

نویسندگان

  • Jie Han
  • Jiafu Tan
  • Lili Tu
  • Xianlong Zhang
چکیده

Cotton fibres, the single-celled trichomes derived from the ovule epidermis, provide the most important natural material for the global textile industry. A number of studies have demonstrated that regulating endogenous hormone levels through transgenic approaches can improve cotton fibre qualities. Phytosulfokine-α (PSK-α) is a novel peptide hormone in plants that is involved in regulating cell proliferation and elongation. However, its potential applications in crop genetic improvement have not been evaluated. In this study, we describe how exogenous PSK-α application promotes cotton fibre cell elongation in vitro. Chlorate, an effective inhibitor of peptide sulfation, suppressed fibre elongation in ovule culture. Exogenously applied PSK-α partly restored the chlorate-induced suppression. A putative PSK gene (GhPSK) was cloned from Gossypium hirsutum. Expression pattern analysis revealed that GhPSK is preferentially expressed in rapidly elongating fibre cells (5-20 days postanthesis). Overexpression of GhPSK in cotton increased the endogenous PSK-α level and promoted cotton fibre cell elongation, resulting in longer and finer fibres. Further results from electrophysiological and physiological analyses suggest that GhPSK affects fibre development through regulation of K(+) efflux. Digital gene expression (DGE) profile analysis of GhPSK overexpression lines indicates that PSK signalling may regulate the respiratory electron-transport chain and reactive oxygen species to affect cotton fibre development. These results imply that peptide hormones are involved in cotton fibre growth and suggest a new strategy for the biotechnological improvement of cotton fibre quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3

Cotton fibres are unusually long, single-celled epidermal seed trichomes and a model for plant cell growth, but little is known about the regulation of fibre cell elongation. Here we report that a homeodomain-leucine zipper (HD-ZIP) transcription factor, GhHOX3, controls cotton fibre elongation. GhHOX3 genes are localized to the 12th homoeologous chromosome set of allotetraploid cotton cultivar...

متن کامل

Pectin Methylesterase and Pectin Remodelling Differ in the Fibre Walls of Two Gossypium Species with Very Different Fibre Properties

Pectin, a major component of the primary cell walls of dicot plants, is synthesized in Golgi, secreted into the wall as methylesters and subsequently de-esterified by pectin methylesterase (PME). Pectin remodelling by PMEs is known to be important in regulating cell expansion in plants, but has been poorly studied in cotton. In this study, genome-wide analysis showed that PMEs are a large multi...

متن کامل

Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation

Cotton fibres are hair-like single-cells that elongate to several centimetres long after their initiation from the ovule epidermis at anthesis. The accumulation of malate, along with K+ and sugars, is thought to play an important role in fibre elongation through osmotic regulation and charge balance. However, there is a lack of evidence for or against such an hypothesis. Phosphoenolpyruvate car...

متن کامل

Gene expression changes and early events in cotton fibre development.

BACKGROUND Cotton is the dominant source of natural textile fibre and a significant oil crop. Cotton fibres, produced by certain species in the genus Gossypium, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. Cotton fibre development is delineated into four distinct and overlapping developmental stages: fibre initiation, elongation, secondary wall biosy...

متن کامل

Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum)

High-quality cotton fibre equates to a more comfortable textile. Fibre length is an important index of fibre quality. Hydrogen peroxide (H2O2) acts as a signalling molecule in the regulation of fibre elongation. Results from in vitro ovule culture suggest that the alteration of fibre cell H2O2 levels affects fibre development. Ascorbate peroxidase (APX) is an important reactive oxygen species (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant biotechnology journal

دوره 12 7  شماره 

صفحات  -

تاریخ انتشار 2014